Superconducting Motor

[NASA GRANT NUMBER: NNX15AE41A]

Kiruba Haran, Andrew Alleyne, David Loder, Reed Sanchez, Matt Feddersen

Tim Haugan

Mike Sumption

Shep Salon, Tan Pham

Scott Sudhoff

Peter Kascak (NASA TO)

NASA FW/AATT HEP Technology Roadmap

N. Madavan, September 2014

Fixed Wing Project Fundamental Aeronautics Program

Approach

NASA LEARN Phase 1: Establish feasibility of superconducting motor with:

- Stationary field winding assembly to utilize MRI technology
- Explore peak fields up to 10T
- High field superconductor (e.g. Nb₃Sn)
- Active magnetic shield to eliminate field outside while maximizing "air gap" flux density

Key Technical Questions

High field SC coils

- racetrack coils, stability, current ramps, quench protection

Cryogenic Thermal Management System

- heat loads, reliability, cryogen free systems

Structural integrity

- higher internal stresses, suspension system

Motor Power Density

- overall motor configuration, auxiliaries, "conventional" components

Concept Design

Electromagnetics

Magnetic field in cross-section of active region

Radial Flux Density along D-axis

Radial Flux Density at Armature

Multi-Objective Optimization

Fitness Formulation for Genetic Algorithm¹

- Impose constraints on candidate designs
 - ► Limit Design Space
 - Critical Surface
- Define fitness vector to:
 - Maximize Volumetric Power Density
 - ► Minimize Superconductor
 - ► Minimize Far Field
- Fitness function -> Genetic Algorithm

1. S.D. Sudhoff. *Power Magnetic Devices: A Multi-Objective Design Approach*. Hoboken, New Jersey: Wiley, 2014.

Results

Pareto-Optimal Front for 8 pole designs

Aggregated Pareto-Optimal Front Pole Counts 6-18 included

- External Field Requirement: 0.5 mT (MRI Industry)
- High Armature Flux Density Achievable (>5 T)
- Pole Counts > 8 yield minimal improvement

Field Requirement and HTS

External Field Requirement Study

-Up to 0.18 m³ (40%) reduction in machine size

Comparison with YBCO

-YBCO nearing competitive performance

2. Critical current density above 15MAcm-2 at 30K, 3T in 2.2µm thick heavily-doped (Gd,Y)Ba2Cu3Ox superconductor tapes

3D Field Analysis - Magsoft

Full 3D Time-stepping Model to validate EM performance

Phase EMFs at 3000 rpm

Torque: 44.2 kNm

39% higher than 2D prediction

because of extra coupling in end

turns.

3D EM Simulation

Motor Configuration

Thermal Design and Analysis

Stator Cross-Section

Table: Heat Load Summary

	Heat Load (W)
Stage 1 Cryocooler	
Radiation	12.785
Conduction with Torque Tube	28.885
Current Leads	13.90
Total Stage 1	55.6
Stage 2 Cryocooler	
Radiation	0.029
Conduction with Torque Tube	1.061
Current Leads	0.2
AC Losses	TBD
Total Stage 2	1.1

Acceptable Heat loads

Lumped Parameter Thermal Model

Structural Analysis

- Structural Members
 - ► Coil Former
 - ► Torque Tube
 - ► Vacuum Vessel

- Torque Tube Stress
- Double Turn, 5 mm thick
- (10x nominal torque)
 - ► Maximum Stress: 170 MPa
 - ► Maximum Displacement: 1.7 mm
 - ➤ Yield Strength of Titanium: 225 MPa

Mechanical Stress on Torque Tube

Cryocooler Selection

$T_{op}(K)$	Type/Company	Model	P_{in}	Mass
1			(kW)	(kg)
4.2K	GM,	SRDK-415D-	7.5	189
	SHIcryogenics	A61D		
4.2K	GM, ARS	DE-215S	6.8	121
20 K	GM, ARS	DE-202PE	1.5**	80***
20 K	Brayton	COTS	0.1**	11***
50 K	GM,	SRDK-101D-	0.3**	49***
	SHIcryogenics	A11B		
50 K	Brayton	COTS	0.02**	11***
50 K	Sterling,	Cryo-tel GT	0.1	3.1
	Sunpower			

Cryocooler Options for the 1.5 W Thermal Load of the Magnet – the machines for 4K also have a 2nd stage capable of handling the 45-50W load at ~ 50K.

- * This is from an over-power machine, not optimized for that heat load.
- ** Assumes first-order estimate for efficiency ~30% of Carnot for all size machines; exact numbers are not available yet.
- *** This is COTS available, not optimized for lower power.

Ref. Reverse-Brayton cycle machines: F. Berg, et al, IEEE TAS 25(3), 5202705 (2015)

Armature Winding Optimization

- Degrees of freedom
 - Width of each 'slot'
 - Depth of each 'slot'
 - Active length of machine
 - Strand radius
 - Q- and D-axis current
- Constraints
 - Geometry
 - Torque
 - Peak winding temperature
 - Maximum loss and maximum mass
- Metrics
 - Total Loss (DC, AC, Windage)
 - Total Mass

Armature Winding Optimization

• Field analysis: 2D Biot-Savart Law in with conductive regions represented as sets of conductors

• AC Loss:

- Driven by eddy currents in armature winding due to superconducting field which is time varying as seen by moving armature
- Loss calculated using temporal average of spatial mean of square of the time derivative of flux density

Thermal model

 Based on 1-D thermal analysis with parabolic temperature distribution within each conductive region

Properties vs. Mass along P.O. Front

Design 111

Enter design number of solution to report on (0 to skip): 111

Length (m): 1.05

Active Length (cm): 77.8

Armature Mass (kg): 38.2

Structural Mass (kg): 1010

Total Mass (kg): 1050

Slot Width (cm): 2.80

Slot Depth (cm): 1.40

Strand Guage: 40

Q-Axis Rotor Current (A): -1540

D-Axis Rotor Current (A): 0

Current Density (A rms/mm²): 15.1

DC Resistive Loss (kW): 26.5

AC Proximity Loss (kW): 13.6

Windage Loss (kW): 24.7

Total Armature Loss (kW): 64.7

Efficiency (%): 99.7

Mean Winding Temperature (C): 182

Power Density Estimates

Coil Selection for Bench Test

Selected Coil for 2.7 T Armature Field

Winding Dimensions (in mm)

3-D Field Distribution - Peak 6 T

Temperature Distribution – Tmax <4.2K

Strain Analysis

Strain Distribution in ANSYS

Tensile Strain < 0.2 %

Instrumentation

Strand Stability

Critical Current Test (Voltage Criterion: $10 \mu V/m$)

$$\frac{Iop}{Ic} = \frac{435 A}{850 A}$$

SEM views of cross-section

Coil Test Setup

Coil tests in progress

LEARN Phase I Plan vs Status

Task	Mar	Ap r	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb
Cenerate first iteration of concept design												
Webinar on concept, and solicitation of new ideas				$\stackrel{\wedge}{\sim}$								
Develop test plan for conductor characterization												
Conductor high field and ac oss tests												
Concept for high field SC coil assembly												
Concept for cryogen free cooling system												
Concept for high field air-core armature												
Evaluate alternate approaches or subsystems												
Lefine concept design												
Preliminary design review on motor concept (TRL 2)										Z	7	-
Bench tests on subsystems												